
COURSE NAME:
DATA WAREHOUSING & DATA MINING

LECTURE 13
TOPICS TO BE COVERED:

 DMQL – Data Mining Query language
 Data specification
 Specifying knowledge
 Hierarchy specification
 Pattern presentation & visualisation

specification
 Data mining languages and standardisation

of data mining.

SYNTAX FOR DMQL

 Syntax for specification of
 task-relevant data

 the kind of knowledge to be mined

 concept hierarchy specification

 interestingness measure

 pattern presentation and visualization

 Putting it all together — a DMQL query

September 23, 20144

SYNTAX FOR TASK-RELEVANT DATA
SPECIFICATION

 use database database_name, or use
data warehouse data_warehouse_name

 from relation(s)/cube(s) [where condition]

 in relevance to att_or_dim_list

 order by order_list

 group by grouping_list

 having condition

September 23, 20145

SPECIFICATION OF TASK-RELEVANT DATA

September 23, 20146

SYNTAX FOR SPECIFYING THE KIND OF
KNOWLEDGE TO BE MINED
 Characterization

Mine_Knowledge_Specification ::=
mine characteristics [as pattern_name]
analyze measure(s)

 Discrimination
Mine_Knowledge_Specification ::=

mine comparison [as pattern_name]
for target_class where target_condition
{versus contrast_class_i where contrast_condition_i}
analyze measure(s)

 Association
Mine_Knowledge_Specification ::=

mine associations [as pattern_name]

September 23, 20147

SYNTAX FOR SPECIFYING THE KIND OF
KNOWLEDGE TO BE MINED (CONT.)

Classification
Mine_Knowledge_Specification ::=
mine classification [as pattern_name]
analyze classifying_attribute_or_dimension

Prediction
Mine_Knowledge_Specification ::=

mine prediction [as pattern_name]
analyze prediction_attribute_or_dimension
{set {attribute_or_dimension_i= value_i}}

September 23, 20148

SYNTAX FOR CONCEPT HIERARCHY
SPECIFICATION
 To specify what concept hierarchies to use

use hierarchy <hierarchy> for <attribute_or_dimension>
 We use different syntax to define different type of hierarchies

 schema hierarchies
define hierarchy time_hierarchy on date as [date,month

quarter,year]
 set-grouping hierarchies

define hierarchy age_hierarchy for age on customer as
level1: {young, middle_aged, senior} < level0: all
level2: {20, ..., 39} < level1: young
level2: {40, ..., 59} < level1: middle_aged
level2: {60, ..., 89} < level1: senior

September 23, 20149

SYNTAX FOR CONCEPT HIERARCHY
SPECIFICATION (CONT.)

 operation-derived hierarchies
define hierarchy age_hierarchy for age on customer as
{age_category(1), ..., age_category(5)} := cluster(default,
age, 5) < all(age)

 rule-based hierarchies
define hierarchy profit_margin_hierarchy on item as
level_1: low_profit_margin < level_0: all

if (price - cost)< $50
level_1: medium-profit_margin < level_0: all

if ((price - cost) > $50) and ((price - cost) <=
$250))

level_1: high_profit_margin < level_0: all
if (price - cost) > $250

September 23, 201410

SYNTAX FOR INTERESTINGNESS MEASURE
SPECIFICATION

 Interestingness measures and thresholds can be specified
by the user with the statement:

with <interest_measure_name> threshold =
threshold_value

 Example:
with support threshold = 0.05
with confidence threshold = 0.7

September 23, 201411

SYNTAX FOR PATTERN PRESENTATION AND
VISUALIZATION SPECIFICATION

 We have syntax which allows users to specify the display of
discovered patterns in one or more forms

display as <result_form>
 To facilitate interactive viewing at different concept level, the

following syntax is defined:

Multilevel_Manipulation ::= roll up on
attribute_or_dimension

| drill down on
attribute_or_dimension

| add attribute_or_dimension
| drop attribute_or_dimension

September 23, 201412

PUTTING IT ALL TOGETHER: THE FULL
SPECIFICATION OF A DMQL QUERY

use database AllElectronics_db
use hierarchy location_hierarchy for B.address
mine characteristics as customerPurchasing
analyze count%
in relevance to C.age, I.type, I.place_made
from customer C, item I, purchases P, items_sold S, works_at W,

branch
where I.item_ID = S.item_ID and S.trans_ID = P.trans_ID

and P.cust_ID = C.cust_ID and P.method_paid = ``AmEx''
and P.empl_ID = W.empl_ID and W.branch_ID = B.branch_ID
and B.address = ``Canada" and I.price >= 100

with noise threshold = 0.05
display as table

13

OTHER DATA MINING LANGUAGES &
STANDARDIZATION EFFORTS

 Association rule language specifications
 MSQL (Imielinski & Virmani’99)
 MineRule (Meo Psaila and Ceri’96)
 Query flocks based on Datalog syntax (Tsur et al’98)

 OLEDB for DM (Microsoft’2000)
 Based on OLE, OLE DB, OLE DB for OLAP
 Integrating DBMS, data warehouse and data mining

 CRISP-DM (CRoss-Industry Standard Process for Data Mining)
 Providing a platform and process structure for effective data

mining
 Emphasizing on deploying data mining technology to solve

business problems

September 23, 201414

DESIGNING GRAPHICAL USER INTERFACES
BASED ON A DATA MINING QUERY LANGUAGE

 What tasks should be considered in the design GUIs
based on a data mining query language?

 Data collection and data mining query composition

 Presentation of discovered patterns

 Hierarchy specification and manipulation

 Manipulation of data mining primitives

 Interactive multilevel mining

 Other miscellaneous information

How can you define following schema in
DMQL

 Fact Table
 Dimension Table
 Star Schema
 Snowflake Schema
 Fact Constellation

September 23, 201415

A Data Mining Query Language,
DMQL: Language Primitives

A DATA MINING QUERY LANGUAGE,
DMQL: LANGUAGE PRIMITIVES

 Cube Definition (Fact Table)
define cube <cube_name> [<dimension_list>]:

<measure_list>
 Dimension Definition (Dimension Table)

define dimension <dimension_name> as
(<attribute_or_subdimension_list>)

 Special Case (Shared Dimension Tables)
 First time as “cube definition”
 define dimension <dimension_name> as

<dimension_name_first_time> in cube
<cube_name_first_time>

September 23, 2014

Data Mining:
Concepts and

Techniques
17

DEFINING A STAR SCHEMA IN DMQL

define cube sales_star [time, item, branch, location]:
dollars_sold = sum(sales_in_dollars), avg_sales =

avg(sales_in_dollars), units_sold = count(*)
define dimension time as (time_key, day, day_of_week,

month, quarter, year)
define dimension item as (item_key, item_name, brand,

type, supplier_type)
define dimension branch as (branch_key, branch_name,

branch_type)
define dimension location as (location_key, street, city,

province_or_state, country)

DEFINING A SNOWFLAKE SCHEMA IN DMQL

define cube sales_snowflake [time, item, branch, location]:
dollars_sold = sum(sales_in_dollars), avg_sales =

avg(sales_in_dollars), units_sold = count(*)
define dimension time as (time_key, day, day_of_week, month,

quarter, year)
define dimension item as (item_key, item_name, brand, type,

supplier(supplier_key, supplier_type))
define dimension branch as (branch_key, branch_name,

branch_type)
define dimension location as (location_key, street,

city(city_key, province_or_state, country))

DEFINING A FACT CONSTELLATION IN DMQL

define cube sales [time, item, branch, location]:
dollars_sold = sum(sales_in_dollars), avg_sales =

avg(sales_in_dollars), units_sold = count(*)
define dimension time as (time_key, day, day_of_week, month, quarter, year)
define dimension item as (item_key, item_name, brand, type, supplier_type)
define dimension branch as (branch_key, branch_name, branch_type)
define dimension location as (location_key, street, city, province_or_state,

country)
define cube shipping [time, item, shipper, from_location, to_location]:

dollar_cost = sum(cost_in_dollars), unit_shipped = count(*)
define dimension time as time in cube sales
define dimension item as item in cube sales
define dimension shipper as (shipper_key, shipper_name, location as location

in cube sales, shipper_type)
define dimension from_location as location in cube sales
define dimension to_location as location in cube sales

MEASURES: THREE CATEGORIES

 distributive: if the result derived by applying the function to
n aggregate values is the same as that derived by
applying the function on all the data without partitioning.

 E.g., count(), sum(), min(), max().

 algebraic: if it can be computed by an algebraic function
with M arguments (where M is a bounded integer), each
of which is obtained by applying a distributive aggregate
function.

 E.g., avg(), min_N(), standard_deviation().

 holistic: if there is no constant bound on the storage size
needed to describe a subaggregate.

 E.g., median(), mode(), rank().

