
COURSE NAME:
DATA WAREHOUSING & DATA MINING

LECTURE 13
TOPICS TO BE COVERED:

 DMQL – Data Mining Query language
 Data specification
 Specifying knowledge
 Hierarchy specification
 Pattern presentation & visualisation

specification
 Data mining languages and standardisation

of data mining.

SYNTAX FOR DMQL

 Syntax for specification of
 task-relevant data

 the kind of knowledge to be mined

 concept hierarchy specification

 interestingness measure

 pattern presentation and visualization

 Putting it all together — a DMQL query

September 23, 20144

SYNTAX FOR TASK-RELEVANT DATA
SPECIFICATION

 use database database_name, or use
data warehouse data_warehouse_name

 from relation(s)/cube(s) [where condition]

 in relevance to att_or_dim_list

 order by order_list

 group by grouping_list

 having condition

September 23, 20145

SPECIFICATION OF TASK-RELEVANT DATA

September 23, 20146

SYNTAX FOR SPECIFYING THE KIND OF
KNOWLEDGE TO BE MINED
 Characterization

Mine_Knowledge_Specification ::=
mine characteristics [as pattern_name]
analyze measure(s)

 Discrimination
Mine_Knowledge_Specification ::=

mine comparison [as pattern_name]
for target_class where target_condition
{versus contrast_class_i where contrast_condition_i}
analyze measure(s)

 Association
Mine_Knowledge_Specification ::=

mine associations [as pattern_name]

September 23, 20147

SYNTAX FOR SPECIFYING THE KIND OF
KNOWLEDGE TO BE MINED (CONT.)

Classification
Mine_Knowledge_Specification ::=
mine classification [as pattern_name]
analyze classifying_attribute_or_dimension

Prediction
Mine_Knowledge_Specification ::=

mine prediction [as pattern_name]
analyze prediction_attribute_or_dimension
{set {attribute_or_dimension_i= value_i}}

September 23, 20148

SYNTAX FOR CONCEPT HIERARCHY
SPECIFICATION
 To specify what concept hierarchies to use

use hierarchy <hierarchy> for <attribute_or_dimension>
 We use different syntax to define different type of hierarchies

 schema hierarchies
define hierarchy time_hierarchy on date as [date,month

quarter,year]
 set-grouping hierarchies

define hierarchy age_hierarchy for age on customer as
level1: {young, middle_aged, senior} < level0: all
level2: {20, ..., 39} < level1: young
level2: {40, ..., 59} < level1: middle_aged
level2: {60, ..., 89} < level1: senior

September 23, 20149

SYNTAX FOR CONCEPT HIERARCHY
SPECIFICATION (CONT.)

 operation-derived hierarchies
define hierarchy age_hierarchy for age on customer as
{age_category(1), ..., age_category(5)} := cluster(default,
age, 5) < all(age)

 rule-based hierarchies
define hierarchy profit_margin_hierarchy on item as
level_1: low_profit_margin < level_0: all

if (price - cost)< $50
level_1: medium-profit_margin < level_0: all

if ((price - cost) > $50) and ((price - cost) <=
$250))

level_1: high_profit_margin < level_0: all
if (price - cost) > $250

September 23, 201410

SYNTAX FOR INTERESTINGNESS MEASURE
SPECIFICATION

 Interestingness measures and thresholds can be specified
by the user with the statement:

with <interest_measure_name> threshold =
threshold_value

 Example:
with support threshold = 0.05
with confidence threshold = 0.7

September 23, 201411

SYNTAX FOR PATTERN PRESENTATION AND
VISUALIZATION SPECIFICATION

 We have syntax which allows users to specify the display of
discovered patterns in one or more forms

display as <result_form>
 To facilitate interactive viewing at different concept level, the

following syntax is defined:

Multilevel_Manipulation ::= roll up on
attribute_or_dimension

| drill down on
attribute_or_dimension

| add attribute_or_dimension
| drop attribute_or_dimension

September 23, 201412

PUTTING IT ALL TOGETHER: THE FULL
SPECIFICATION OF A DMQL QUERY

use database AllElectronics_db
use hierarchy location_hierarchy for B.address
mine characteristics as customerPurchasing
analyze count%
in relevance to C.age, I.type, I.place_made
from customer C, item I, purchases P, items_sold S, works_at W,

branch
where I.item_ID = S.item_ID and S.trans_ID = P.trans_ID

and P.cust_ID = C.cust_ID and P.method_paid = ``AmEx''
and P.empl_ID = W.empl_ID and W.branch_ID = B.branch_ID
and B.address = ``Canada" and I.price >= 100

with noise threshold = 0.05
display as table

13

OTHER DATA MINING LANGUAGES &
STANDARDIZATION EFFORTS

 Association rule language specifications
 MSQL (Imielinski & Virmani’99)
 MineRule (Meo Psaila and Ceri’96)
 Query flocks based on Datalog syntax (Tsur et al’98)

 OLEDB for DM (Microsoft’2000)
 Based on OLE, OLE DB, OLE DB for OLAP
 Integrating DBMS, data warehouse and data mining

 CRISP-DM (CRoss-Industry Standard Process for Data Mining)
 Providing a platform and process structure for effective data

mining
 Emphasizing on deploying data mining technology to solve

business problems

September 23, 201414

DESIGNING GRAPHICAL USER INTERFACES
BASED ON A DATA MINING QUERY LANGUAGE

 What tasks should be considered in the design GUIs
based on a data mining query language?

 Data collection and data mining query composition

 Presentation of discovered patterns

 Hierarchy specification and manipulation

 Manipulation of data mining primitives

 Interactive multilevel mining

 Other miscellaneous information

How can you define following schema in
DMQL

 Fact Table
 Dimension Table
 Star Schema
 Snowflake Schema
 Fact Constellation

September 23, 201415

A Data Mining Query Language,
DMQL: Language Primitives

A DATA MINING QUERY LANGUAGE,
DMQL: LANGUAGE PRIMITIVES

 Cube Definition (Fact Table)
define cube <cube_name> [<dimension_list>]:

<measure_list>
 Dimension Definition (Dimension Table)

define dimension <dimension_name> as
(<attribute_or_subdimension_list>)

 Special Case (Shared Dimension Tables)
 First time as “cube definition”
 define dimension <dimension_name> as

<dimension_name_first_time> in cube
<cube_name_first_time>

September 23, 2014

Data Mining:
Concepts and

Techniques
17

DEFINING A STAR SCHEMA IN DMQL

define cube sales_star [time, item, branch, location]:
dollars_sold = sum(sales_in_dollars), avg_sales =

avg(sales_in_dollars), units_sold = count(*)
define dimension time as (time_key, day, day_of_week,

month, quarter, year)
define dimension item as (item_key, item_name, brand,

type, supplier_type)
define dimension branch as (branch_key, branch_name,

branch_type)
define dimension location as (location_key, street, city,

province_or_state, country)

DEFINING A SNOWFLAKE SCHEMA IN DMQL

define cube sales_snowflake [time, item, branch, location]:
dollars_sold = sum(sales_in_dollars), avg_sales =

avg(sales_in_dollars), units_sold = count(*)
define dimension time as (time_key, day, day_of_week, month,

quarter, year)
define dimension item as (item_key, item_name, brand, type,

supplier(supplier_key, supplier_type))
define dimension branch as (branch_key, branch_name,

branch_type)
define dimension location as (location_key, street,

city(city_key, province_or_state, country))

DEFINING A FACT CONSTELLATION IN DMQL

define cube sales [time, item, branch, location]:
dollars_sold = sum(sales_in_dollars), avg_sales =

avg(sales_in_dollars), units_sold = count(*)
define dimension time as (time_key, day, day_of_week, month, quarter, year)
define dimension item as (item_key, item_name, brand, type, supplier_type)
define dimension branch as (branch_key, branch_name, branch_type)
define dimension location as (location_key, street, city, province_or_state,

country)
define cube shipping [time, item, shipper, from_location, to_location]:

dollar_cost = sum(cost_in_dollars), unit_shipped = count(*)
define dimension time as time in cube sales
define dimension item as item in cube sales
define dimension shipper as (shipper_key, shipper_name, location as location

in cube sales, shipper_type)
define dimension from_location as location in cube sales
define dimension to_location as location in cube sales

MEASURES: THREE CATEGORIES

 distributive: if the result derived by applying the function to
n aggregate values is the same as that derived by
applying the function on all the data without partitioning.

 E.g., count(), sum(), min(), max().

 algebraic: if it can be computed by an algebraic function
with M arguments (where M is a bounded integer), each
of which is obtained by applying a distributive aggregate
function.

 E.g., avg(), min_N(), standard_deviation().

 holistic: if there is no constant bound on the storage size
needed to describe a subaggregate.

 E.g., median(), mode(), rank().

